Positronium signature in organic liquid scintillators for neutrino experiments

Davide Franco

APC

ANT 2011

Why tagging positrons in scintillators

Anti-neutrinos are commonly detected in scintillators via inverse beta decay:

$$\overline{\nu}_e + p \longrightarrow n + e^+ \longrightarrow \text{annihilation (?)}$$

$$\longrightarrow \text{capture}$$

- The signature is provided by the delayed e^+ -n coincidence (tenth of μ s)
- e.g.: Reactor anti-neutrino experiments for measuring θ_{13} (Double Chooz, Reno, Daya-Bay) and detectors for reactor monitoring (Nucifer, SONGS, ...) rely on the inverse beta decay signature, fighting with electron like background
- Neutrinos are detected via elastic scattering:

$$v_x + e^- \longrightarrow v_x + e^-$$

- the signature relies on the energy distribution of the recoiled electron
- e.g.: **Solar neutrino experiments (Borexino, SNO+, KamLAND)** have to face the background from cosmogenic 11 C (β +) in order to measure the pep- ν rate

Standard PSD?

Pulse Shape Discrimination (**PSD**) for +/e- may meet a general interest in the neutrino community

But scintillators have almost **equal** response to e⁺/e⁻ in the energy region of interest (<10 MeV)

standard PSD can not be applied!!

No way (up to now!) to separate electron (positron) induced signal from positron (electron) background in scintillator

Exploiting positronium formation...

In matter **positrons** may either directly **annihilate** or form a **positronium** state

Positronium has two ground states:

para-positronium (p-Ps) mean life in vacuum of ~ 120 ps singlet - 2 gamma decay

ortho-positronium (o-Ps) mean life in vacuum of ~ 140 ns triplet - 3 gamma decay

In matter o-Ps has a **shorter mean life**, mainly because of:

spin-flip: conversion to p-Ps due to a magnetic field

pick off: annihilation on collision with an anti-parallel spin electron

Note!! the 3 body decay channel is negligible in matter

Even a short delay (few ns) in energy depositions between positron (via ionization) and annihilation gammas (via Compton scattering) can provide a signature for tagging (a subset of) positrons

Measuring o-Ps in liquid scintillators

D. Franco, G. Consolati, D. Trezzi, Phys. Rev. C83 (2011) 015504

Lab measurements of o-Ps **probability formation** and **lifetime** in liquid scintillators, presently used by **neutrino experiments**, with the Positron Annihilation Lifetime Spectroscopy (**PALS**) technique

Experiment	Scintillator	Fluor	Dope
KamLAND	20%(PC)	1.5 g/I(PPO)	
	80%(OIL)		
Borexino	PC	1.5 g/I PPO	
LVD	Paraffin	1.0 g/I (PPO)	
SNO+	LAB	PPO	0.1%(Nd)
Double Chooz	20% PXE	3-6 g/IPPO	0.1%(Gd)
	80% OIL	20 mg/l Bis-MSB	
Daya Bay	LAB	3 g/IPPO	0.1%(Gd)
		15 mg/l Bis-MSB)
RENO	LAB	1-5 g/IPPO	0.1%(Gd)
		1-2 mg/l Bis-MSB)

Investigated in this set of measurements

Foreseen for the next campaign

The PALS technique

The ²²Na positron source:

decays channel (BR \sim 99.9%): $e^+ + 1.27$ MeV γ mean delay between e^+ and γ : ~ 3.6 ps activity: 0.8 MBq

the source (few µm thick) is inserted between four 7.5 µm thick layers of **Kapton** (low o-Ps formation)

the "sandwich" is poured in a \sim 1 cm thick glass **vial** with the liquid scintillator

The PALS technique

Detectors are commercial plastics scintillators (Pilot U) coupled with PMTs

1.27 MeV gammas are selected with an energy cut > 0.9 MeV (trigger) on detector 1 (plastic scintillator thickness: 25 mm)

0.511 gammas are selected in the energy window [0.35-0.50] MeV (plastic scintillator thickness: 15 mm)

Electronics calibrated with 60Co: 4096 channels, each corresponds to 10.6 ps

Data Analysis

offset

accidentals

resolution function: 2 gaussians

convoluted with
$$G(t) = \sum_{i=1,2} \frac{g_i}{\sqrt{2\pi\sigma_i^2}} \cdot e^{-\frac{t^2}{2\cdot\sigma_i^2}}$$

Data Analysis

1: annihilation or p-Ps

2: o-Ps

accidentals

resolution function: 2 gaussians

convoluted with
$$G(t) = \sum_{i=1,2} \frac{g_i}{\sqrt{2\pi\sigma_i^2}} \cdot e^{-\frac{t^2}{2\cdot\sigma_i^2}}$$

APC

Each sample has been measured 3 times to take into account systematic effects

offset

Detection efficiency checked with MC (Geant4-based)

ANT 2011 D. Franco

o-Ps formation probability and lifetime

Estimation of o-Ps in Kapton

Sandwiches with 1-2-3 Kapton layers and Plexiglas (o-Ps $\tau \sim 2$ ns)

o-Ps probability formation in 2 layers of Kapton: $20.6 \pm 0.2 \%$

o-Ps formation probability and lifetime

Estimation of o-Ps in Kapton

Sandwiches with 1-2-3 Kapton layers and Plexiglas (o-Ps $\tau \sim 2$ ns)

o-Ps probability formation in 2 layers of Kapton: $20.6 \pm 0.2 \%$

$$p_2 = N_2 / (N_1 + N_2 - N_k)$$

where

1: annihilation / p-Ps

2: o-Ps

k: Kapton

Fit results on scintillator samples

• mean $\tau_1 = 365 \pm 8 \text{ ps}$

• $\sigma_1 \sim 110 \text{ ps } (g_1 \sim 0.8)$

• $\sigma_2 \sim 160 \text{ ps } (g_2 \sim 0.2)$

• χ^2 /ndf \in [0.85 - 0.98]

Systematic errors:

• o-Ps
$$\tau = 0.03$$
 ns

•
$$o-Ps p = 0.5\%$$

Results

- opportunity to disentangle e+/e-:
 All samples have o-Ps probability
 formation ~ 0.5 and mean life ~ 3
 ns
- can the technique be improved?
 o-Ps characteristics in PC and PC
 +PPO have (slight) differences. Can
 a doper increase o-Ps mean life and probability formation?

Material	f_2	$ au_2$ [ns]		
PXE	0.466 ± 0.005	2.74 ± 0.03		
LAB	0.542 ± 0.005	3.08 ± 0.03		
PC	0.485 ± 0.005	2.96 ± 0.03		
OIL	0.506 ± 0.005	3.04 ± 0.03		
PC+1.5 g/I PPO	0.512 ± 0.005	3.12 ± 0.03		

Scintillator	$ au_1$	$ au_2$	$ au_3$	N_1	N_2	N_3
	[ns]	[ns]	[ns]	%	%	%
$\overline{PC + 1.5 \text{ g/I PPO}}$						
PXE + 1.0 g/I PPO	3.16	7.7	34	84.0	12.0	2.9
LAB + 1.0~g/I~PPO	7.46	22.3	115	75.9	21.0	3.1

The o-Ps signature

Photon Emission Time

Ideal case, PC+1.5 g/1 PPO, not including absorption and re-emission

o-Ps signature

Photon emission time **distortion** due to the **delay** between photon emissions induced by **positron** ionization and by Compton electrons from annihilation **gammas**

MC simulation of an ideal detector

- Full **Monte Carlo simulation** (Geant4) to understand the effect of o-Ps on the Pulse Shape Discrimination
- Assuming an ideal spherical detector like Borexino/KamLAND/SNO+:
 - 4 m radius stainless steel sphere
 - \approx 2000 PMTs (Jitter = 1.4 ns)
 - no acrylic/nylon vessels
 - 10000 photons/MeV
 - optical processes (Rayleigh, reflections, absorption and re-emission,...)
 - PC + 1.5 g/1 PPO (Borexino like)
 - Scintillation decay constants: $\tau_1 = 3.57$ ns (89.5%), $\tau_2 = 17.61$ ns (6.3%), $\tau_3 = 59.9$ ns (4.2%) (*Borexino, Nucl. Instrum. Meth. A 584, 98 2008*)
 - Relectronics with Flash ADC 1 GHz
 - 1 kHz of noise on each PMT

The Pulse Shape

Including ALL the detection effects and Time Of Flight subtraction

The Energy Dependence

- The o-Ps pulse shape is the **sum of 2 distributions**
 - annihilation gammas, with "FIXED" number of p.e. ∝ quenched(2x511 keV)
 - positron ionization, with "VARYING" number of p.e. ∝ quenched (positron

energy)

- The relative weight between the 2 distributions varies with the positron energy
- At $E_{e+} >> 1.022$ MeV, o-Ps and annihilation distributions coincide
- Estimator (**R**): ratio between mean times of annihilation and o-Ps distributions

Pulse Shape Discrimination

Estimator (**Q**): ratio between numbers of p.e.'s in [0-18] ns and [18-60] ns

Pulse Shape Discrimination

Good separation!!

at 0.5 MeV and $\varrho < \sim 0.5$:

$$N_{oPs} \sim 50\%$$

 $N_{e-} \sim 1\%$

Estimator (**Q**): ratio between numbers of p.e.'s in [0-18] ns and [18-60] ns

APC

PSD dependence on the energy

PSD optimization by varying $\varrho_0(E)$ threshold, in order to accept 1% of electron rejection

Total e+ tagging efficiency = o-Ps formation probability x
PSD efficiency

With this "rough" technique, up to ~25% of positrons are tagged

o-Ps PSD is effective in discriminating (a subset of) positrons

o-Ps PSD in Borexino: pep neutrinos

Presented in TAUP 2011 by Cristian Galbiati

Solar pep neutrinos: small branch (0.23%) but at the top of the *pp* chain Main background: cosmogenic ¹¹C (positron emitter)

Positron Sample From Cosmogenic ¹¹C

The Three Fold Coincidence among:

 μ (secondaries) + $^{12}C \rightarrow \mu$ (secondaries) + ^{11}C + n

 $n + p \rightarrow d + 2.2 \text{ MeV } \gamma$ (230 µs)

 $^{11}\text{C} \rightarrow ^{11}\text{B} + e^+ + v_e$ (30 min)

o-Ps PSD in Borexino

pep neutrinos in Borexino

Conclusion

- o-Ps in liquid scintillators has a mean life of ~ 3 ns and formation probability ~50%
- The delay between positron ionization and gamma induced Compton electrons is an **optimal signature for discriminating e**+/**e**-
- The o-Ps technique has been successfully applied in Borexino
- Near future: **effects of dopers** (Gd, Nd, ...) on o-Ps characteristics in liquid scintillators
- Far future: o-Ps in plastic scintillators (?)

New R&D project

vToPs

Neutrino Tagging with o-Ps just funded by ANR JC